角和角的度量
角和角的度量
教学目的
1.使学生能通过生活实际中对角的认识来掌握角的两种概念.
2.使学生掌握角的各种表示法.
3.使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化
教学重点
角的概念及角的表示法.
教学难点
单位之间的转化
教学过程
一、复习提问
什么叫射线?由一点能画出几条射线?如何表示射线由学生在黑板上画图并口答,画出两条射线就可以了.
二、引入新课
问学生图1是小学时学过的什么图形?
学生回答是角,教师板书课题.
1.4 角
1.角的定义:提问学生,在小学时已经学过角,你们是怎么认识角的?在生活中你看到角的形象吗?
由学生举出一些实例,如桌面上的角,钟表表盘上长短针之间构成角,圆规两脚张开口后构成角等等.教师说明,角是研究平面几何时常用的一种图形,首先学会定义.
定义:有公共端点的两条射线组成的图形叫做角.
要明确组成角的两个条件:
(1)两条射线,这两条射线叫角的边;
(2)两条射线有公共端点,这点叫角的顶点.
从我们想象圆规两脚张开形成角的过程得到另一个定义:
一条射线OA由原来位置绕着它的端点O旋转到另一个位置OB所成的图形.
教师用一教具演示,并画图2说明旋转的边OB经过的平面部分是角的内部,有时称为角内.两条射线为角的边,有时要在边上取一点,就是指射线上的点.其它平面部分叫角的外部,有时称为角外.
2.平角、周角的概念
由于小学已学过平角与周角,所以教师用教具演示到平角及周角时,提问学生答出两种角的名称.教师在黑板上画出图形3
平角定义:射线OA绕点O旋转,当终止位置OB和起始位置OA成一直线时,所成的角叫平角.
注意直线与平角的区别在于平角要有一个顶点O,还可以从起始位置向终止的位置画一个带箭头的弧线.
在讲周角的定义后,说明画图时为了表明是一个周角,可以由起始位置向终止位置画一个带箭头的弧线,并写A、B两个字母表示是两条射线,如图4
3.角的表示法:角的符号为“∠”后面加上表示有一个公共端点的两条射线的三个大写字母,且角的顶点字母必须写在中间.
(1)图2中的角记作∠AOB或∠BOA,读作角AOB或角BOA.
(2)图3中的平角记作∠AOB读作平角AOB.
(3)图4中的周角记作∠AOB读作周角AOB.
(4)问图5(1)中哪是∠AOB的内部?哪是它的外部?
学生可能会犹豫不定,或互相争论,不知道此图答哪一部分为内部和外部.
此时教师说明,今后所说的角,除非特别注明,都是指还没有旋转到成为平角时所成的角.此时,教师在角内画出弧线(图5(2)),说明∠AOB的内部是指有弧线的平面部分.教师随手在图上写出“内部”两字(如图5(3)),除两边和内部外的平面部分为角的外部,教师在图形上写出“外部”两字(如图5(4)),(教师讲课时,不必分四个图画,只在一个图上按讲课顺序写就行了).
(5)当我们的图中只有一个角时也可以用顶点的字母表示,如图2和图5,中的角均可以表示为∠O,读作角O.
(6)问如图6中有几个角,把它们的名称写出来.
学生答出有三个角,分别是∠AOB、∠BOC、∠AOC.
教师再问,这三个角记作∠O可以吗?为什么?此时教师一定要强调,当一个顶点O处不是只有唯一的一个角,不能用顶点的一个字母表示,因为,这样就分不出
∠O是指哪个角.
大家都要记住这个规定.
(7)为了方便,也可用一个希腊字母表示一个角,如图7,在角的内部靠近角的顶点处画一弧线,写上希腊字母α(或其它希腊字母),记作∠α,读作角α.
(8)又可以用一个数字表示一个角,如图8,在角的内部靠近顶点处画一弧线,写上一个数字1,记作∠1,读作角1.
- 上一篇:一个数乘以小数2